224 research outputs found

    Espace et échelle du mouvement : la loi de Fitts dans le monde physique et dans les mondes électroniques

    Get PDF
    Nous avons conçu et mis en oeuvre une approche nouvelle du paradigme classique du pointage faisant jouer un rôle central à la variable d’échelle. Nous utilisons le diagramme espace-échelle introduit par Furnas et Bederson (1995) dans le champ de l’interaction homme-machine (IHM). Fondé sur une géométrie inédite, ce type de représentation permet de visualiser les variations d’échelle en même temps que les déplacements dans l’espace, ce qui nous a permis d’analyser la cinématique de la navigation au sein des mondes électroniques multi-échelle (ou zoomables). Les travaux rapportés dans ce document se développent autour de la frontière qui sépare le monde réel et les mondes d’information. Le monde réel dans lequel s’inscrivent normalement nos mouvements est typiquement dynamique : il met en jeu la masse, la longueur et le temps. En revanche, les mondes d’information auxquels les humains sont exposés depuis à peine deux décennies sont d’essence purement cinématique, en ce sens qu’ils ignorent typiquement la masse, et donc les contraintes de force, d’énergie et de puissance. C’est la nature cinématique des mondes d’information qui explique que leurs contenus soient indéfiniment rescalables, propriété dont les objets du monde physique ne jouissent que dans une étroite mesure, comme on le sait depuis Galilée

    Effects of target expansion on selection performance in older computer users

    Get PDF
    Point and click interactions using a mouse are an integral part of computer use for current desktop systems. Compared with younger users though, older adults experience greater difficulties performing cursor positioning tasks, and this can present limitations to using a computer easily and effectively. Target expansion is a technique for improving pointing performance, where the target dynamically grows as the cursor approaches. This has the advantage that targets conserve screen real estate in their unexpanded state, yet can still provide the benefits of a larger area to click on. This paper presents two studies of target expansion with older and younger participants, involving multidirectional point-select tasks with a computer mouse. Study 1 compares static versus expanding targets, and Study 2 compares static targets with three alternative techniques for expansion. Results show that expansion can improve times by up to 14%, and reduce error rates by up to 50%. Additionally, expanding targets are beneficial even when the expansion happens late in the movement, i.e. after the cursor has reached the expanded target area or even after it has reached the original target area. Participants’ subjective feedback on the target expansion are generally favorable, and this lends further support for the technique

    Brain-based target expansion

    Full text link

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    A parsimonious oscillatory model of handwriting

    Get PDF
    International audienceWe propose an oscillatory model that is theoretically parsimonious, empirically efficient and biologically plausible. Building on Hollerbach’s (Biol Cybern 39:139–156, 1981) model, our Parsimonious Oscillatory Model of Handwriting (POMH) overcomes the latter’s main shortcomings by making it possible to extract its parameters from the trace itself and by reinstating symmetry between the x and y coordinates. The benefit is a capacity to autonomously generate a smooth continuous trace that reproduces the dynamics of the handwriting movements through an extremely sparse model, whose efficiency matches that of other, more computationally expensive optimizing methods. Moreover, the model applies to 2D trajectories, irrespective of their shape, size, orientation and length. It is also independent of the endeffectors mobilized and of the writing direction

    Non-monotonicity on a spatio-temporally defined cyclic task: evidence of two movement types?

    Get PDF
    We tested 23 healthy participants who performed rhythmic horizontal movements of the elbow. The required amplitude and frequency ranges of the movements were specified to the participants using a closed shape on a phase-plane display, showing angular velocity versus angular position, such that participants had to continuously control both the speed and the displacement of their forearm. We found that the combined accuracy in velocity and position throughout the movement was not a monotonic function of movement speed. Our findings suggest that specific combinations of required movement frequency and amplitude give rise to two distinct types of movements: one of a more rhythmic nature, and the other of a more discrete nature

    Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings

    Get PDF
    Background\ud \ud Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings.\ud \ud Methods\ud \ud Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs).\ud \ud Results\ud \ud Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target.\ud \ud Conclusion \ud \ud Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    A Turing-Like Handshake Test for Motor Intelligence

    Full text link
    Abstract. In the Turing test, a computer model is deemed to “think intelligently ” if it can generate answers that are not distinguishable from those of a human. This test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, with the human hand movement being a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human, artificial, or a linear combination of the two). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a forced-choice method and ask which of two systems is more humanlike. By comparing a given model with a weighted sum of human and artificial systems, we fit a psychometric curve to the answers of the interrogator and extract a quantitative measure for the computer model in terms of similarity to the human handshake
    corecore